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The Navier-Stokes momentum equation for incompressible flow. This tile page itself is used as a simulation domain in which this
equation is solved, highlighting the solver’s ability to handle complex boundary conditions and resolve details while maintaining

low levels of compression (here: ρmax
err < 0.1% forN > 250k particles).
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Chapter 2

Governing Equations of Fluid Flow

In an attempt to create a numerical solver for fluid dynamics problems, the governing equations of the
underlying physical process must first be understood and formulated. Only then can an appropriate
discretization be applied to numerically solve for desired properties of a system. In this chapter, the
abstractions of continuum mechanics are used as a framework to describe incompressible flow. Physical
principles such as conservation of mass andmomentum are used to derive the continuity andmomentum
equations which encode them, then augmented by constitutive relations which describe properties of
Newtonian fluids to finally yield the Navier-Stokes equations as governing equations.12

The particular form of these equations will favour a Lagrangian view of the system, in which the
frame of reference in which quantities are described is advected along with the flow of the fluid itself,
which will seamlessly integrate with the discretization scheme later used to derive workable numerical
algorithms.

2.1 Lagrangian and Eulerian Continuum Mechanics

The purpose of our mathematical modelling of fluids is to simulate fluid dynamics at macroscopic scales
with numerical methods. We know that fluids consist of innumerable molecules, and smaller yet quarks,
interacting in complex ways, which give rise to emergent properties that we observe on a macroscopic
scale. Instead of resolving all scales and simulating from quantum mechanical principles up, we content
with modelling the emergent properties themselves, focusing on the question of how fluids behave in-
stead of asking why. Our macroscopic scale is so many orders of magnitude larger than the discrete,
physical reality, that we can reasonably assume quantities describing the fluid to be continuous and
tackle them with the tools of calculus. This gives rise to the field of Continuum Mechanics.
In the following derivations, two major points of view can be taken, which produce different but equiv-
alent forms of equations: the Eulerian or conservation forms, and the Lagrangian or nonconservation
forms of the equations1.

Using the assumption from continuum mechanics that quantities of our fluid are continuously dis-
tributed in space and asserting that they be differentiable, we can define derivatives on them. The two
major forms of equations arise from a different interpretation of the so-called substantial derivative1 or
material derivative2 D

Dt . This operator describes the instantaneous time rate of change of a quantity of a
continuum element as it moves through space1. This movement through space however can be observed
from different frames of reference:

• a frame that is advected along with the flow of the fluid, in which the continuum element observed
is constant

• a frame that is constant in space at a fixed point, observing the flow of the fluid as continuum
elements move through it

For both frames of reference, it can be derived that the material derivative in vector notation is1:

D

Dt
=

∂

∂t︸︷︷︸
local derivative

+ (v⃗ · ∇)︸ ︷︷ ︸
convective derivative

(2.1)

where v⃗ is the velocity of the element and∇ denotes the differential operator
(

∂
∂x0

, ∂
∂x1

, . . . , ∂
∂xn

)T

in n

dimensions1. If an Eulerian view is chosen, there is an additional term for the convective derivate, which
describes a rate of change of a quantity at a fixed point due to movement of the fluid. If a Lagrangian
view is taken, the velocity of the fluid element in the advected frame of reference is always zero, the
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2.2 THE CONTINUITY EQUATION GOVERNING EQUATIONS OF FLUID FLOW

convective derivative drops out and the material derivative simply becomes the total time derivative of
a quantity. Whether this simplification can be used largely depends on the later choice of discretization:
discretizing space and tracking the fluid that moves through it results in an Eulerian framework, while
discretizing the continuum into particles and sampling quantities only at particle positions makes the
Lagrangian view applicable.
As is common for SPH discretizations, we will elect the Lagrangian view since it holds additional desirable
properties such as making conservation of mass trivial to implement. We state all following equations in
the Lagrangian, nonconservation form.

2.2 The Continuity Equation

Using the Lagrangian view of continuum mechanics, we can apply laws of conservation to derive equa-
tions that express invariants of each fluid element with respect to time, which is an important step to-
wards describing the dynamics of the system as time evolves. One such equation is the continuity

equation, which expresses conservation of mass:
Consider an infinitesimally small volume element δV with density ρ. The mass of the volume δm is
simply1:

δm = ρδV (2.2)

and is invariant under the material derivative in the Lagrangian reference frame1:

Dδm

Dt
= 0 conservation of mass (2.3)

=
DρδV
Dt

identity 2.2 (2.4)

= δVDρ

Dt
+ ρ

DδV
Dt

product rule of calculus (2.5)

=
Dρ

Dt
+ ρ

(
1

δV
DδV
Dt

)
divide by δV (2.6)

We can now apply the divergence theorem to relate DV
Dt to the divergence of the velocity across

the volume of the element, where ∂V is its surface and n⃗ the corresponding unit normal vector1:

DV
Dt

=

∮
∂V

v⃗ · n⃗ dS =

∫
V
(∇ · v⃗) dV (2.7)

As the volume V approaches the infinitesimal volume element δV of interest, the velocity in the
volume becomes constant, the integral vanishes, and it holds that1:

D(δV)
Dt

= (∇ · v⃗) δV (2.8)

Substituting Equation 2.8 into Equation 2.6 we finally obtain the continuity equation:

Dρ

Dt
+ ρ (∇ · v⃗) = 0 (2.9)

This is one of the Navier-Stokes equations in its derivative form, as opposed to the more general
integral form1. When we additionally assume that the fluid is incompressible across a wide range of
pressures, as is often done when simulating hydrodynamics, we can assert that the density of the fluid
element in a Lagrangian reference frame is constant, meaning Dρ

Dt = 0 and therefore the velocity field of
the flow for constant density is divergence-free3:

∇ · v⃗ = 0 (2.10)

In the following sections, the fluid will generally be assumed to be incompressible.

An alternative derivation of the continuity equation uses theReynolds Transport Theorem, which
describes the material derivative of a scalar or tensor quantity q(x⃗, t) integrated over a volume as the sum
of its time rate of change within the volume and the flux of the quantity through the volume’s surface3:

D

Dt

∫
V
q(x⃗, t) dV =

∫
V

∂q(x⃗, t)

∂t
dV +

∮
∂V

q(x⃗, t)(v⃗ · n⃗) dS (2.11)
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2.3 THE CAUCHY MOMENTUM EQUATION GOVERNING EQUATIONS OF FLUID FLOW

This derivation goes as follows3:

0 =
D

Dt

∫
V
ρ dV conservation of mass (2.12)

=

∫
V

∂ρ

∂t
dV +

∮
∂V

ρ(v⃗ · n⃗) dS Reynolds Transport Theorem (2.13)

=

∫
V

∂ρ

∂t
dV +

∫
V
∇ · (ρv⃗) dV Divergence Theorem (2.14)

=

∫
V

(
∂ρ

∂t
+∇ · (ρv⃗)

)
dV combine integrals (2.15)

=

∫
V

(
Dρ

Dt
+ ρ∇ · v⃗

)
dV constant density, Lagrangian framework (2.16)

∀V
=⇒ Dρ

Dt
+ ρ (∇ · v⃗) = 0 integral holds for all V (2.17)

This use of the Reynolds Transport Theorem is very similar to the derivation that follows in section 2.3,
which is why this alternative formulation was stated.

2.3 The Cauchy Momentum Equation

Mass is not the only conserved quantity that can be formulated in terms of a volume integral which can be
transformed into amore convenient form using Reynolds Transport Theorem: a vital step in the derivation
of the Navier-Stokes equations comes from applying the same concept to the conservation of momentum.
In fact, the Cauchy momentum equation, which is the general case of the more specific momentum
equation used in the Navier-Stokes equations, can be derived similarly to section 2.2, additionally using
the continuity equation itself and Newton’s second law.

We begin by observing that the change of momentum of a fluid volume V can be defined as the
material derivative of the momentum

∫
V(ρv⃗) dV and simplify the resultant expression3:

D

Dt

∫
V
(ρv⃗) dV define change in momentum (2.18)

=

∫
V

∂(ρv⃗)

∂t
dV +

∮
∂V

ρv⃗(v⃗ · n⃗) dS Reynolds Transport Theorem 2.11 (2.19)

=

∫
V

D

Dt
(ρv⃗) dV +

∫
V
(ρv⃗)∇ · v⃗ dV Divergence Theorem (2.20)

=

∫
V
ρ
Dv⃗

Dt
+ v⃗

Dρ

Dt
+ (ρv⃗)∇ · v⃗ dV product rule on first integral (2.21)

=

∫
V
ρ
Dv⃗

Dt
+ v⃗

(
Dρ

Dt
+ ρ∇ · v⃗

)
︸ ︷︷ ︸
continuity equation=0

dV factor out v⃗ (2.22)

=

∫
V
ρ
Dv⃗

Dt
dV (2.23)

Then, we use Newton’s second law, best known in its form F = ma⃗, to assert that this change in
momentum ma⃗ is equal to the sum of forces exerted on the fluid volume, which can be decomposed
into body forces b⃗ext per unit mass3 that act on the entire fluid mass homogeneously ’at a distance’1,
like gravity for example, and into surface forces described by stress vectors t⃗ integrated over the fluid
element’s surface3: ∫

V
ρ
Dv⃗

Dt
dV =

∮
∂V

t⃗ dS + ρb⃗ext (2.24)

One can define the Cauchy stress tensor T (sometimes referred to as σ) for the material such that it
satisfies Tn⃗ = t⃗3. Then, the divergence theorem may be applied again and the total forces acting on the
fluid element written as: ∫

V
∇ ·T dV + ρb⃗ext (2.25)
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2.4 THE LAGRANGIAN NAVIER-STOKES EQUATIONS GOVERNING EQUATIONS OF FLUID FLOW

Setting the expressions for total force in Equation 2.25 and total change ofmomentum in Equation 2.23
equal according to Newton’s Law, we obtain:∫

V
ρ
Dv⃗

Dt
−∇ ·T− ρb⃗ext dV = 0 (2.26)

From this, we have obtained the Cauchy Momentum Equation as our equation of motion2:

ρ
Dv⃗

Dt
= ∇ ·T+ ρb⃗ext (2.27)

2.4 The Lagrangian Navier-Stokes Equations

With the Cauchy momentum equation we have reached the end of what can be modelled using general
physical principles and continuum mechanics and is valid for a range of materials. To close the system
of equations for fluid flow, generality must be given up and specific assumptions about the behaviour of
fluids must be used to model the specific stress tensor T representing incompressible, linearly viscous or
Newtonian fluids. In order to derive the form of the tensor, we make the further assumptions about the
fluid that will later be clarified:

1. Fluids cannot sustain shear stresses when in rigid body motion.

2. Viscosity depends on the symmetric component of the gradient of velocity, it is linearly proportional
to the rate of deformation tensor.

All remaining terms of the Cauchy momentum equation are clear, only the stress tensor T needs
to be elaborated upon. First, it can be noted that T is a linear transformation3 and that the tensor is
symmetric3, as in equal to its transpose TT = T or Tij = Tji. This means that in three dimensions for
example, only six degrees of freedom actually exist in this tensor4.

The element Tij expresses a stress along some axis e⃗i acting on a plane perpendicular to e⃗j , which
means that the diagonal elements Tii are normal stresses called tensile stresses for negative values and
compressive stresses for positive values of Tii

3, while ∀i ̸= j : Tij refer to shear stresses1.

To make this tensor more tractable, it can be assumed that a fluid is a material which cannot sustain
shear stresses when in rigid body motion, including rest3 (assumption 1) - this means that when in rigid
body motion, the stress vector on any plane is normal to that plane3, the stress is therefore isotropic and
T must be represented by the only isotropic second order tensor λ1 or λδij for some λ ∈ R where δij
is the Kronecker delta5. This motivates a decomposition of T for any general motion into a sum of an
isotropic tensor describing volumetric stress caused by pressure forces and the deviatoric stress V which
simply describes deviation of the total stress T from the volumetric stress6:

T = V − p1 (2.28)

Conventionally, the pressure p is defined such that a positive pressure causes a negative stress, mean-
ing the pressure acts normal to the surface and is directed into the fluid volume V4. For a fluid at rest
Vij = 0 holds and the normal stress is isotropically−p according to Pascal’s law5. Equation 2.28 decom-
poses stresses into a part caused by pressure and one caused by viscosity, which is why V is sometimes
referred to as the viscous stress tensor4. Viscosity can be thought of as internal friction in a fluid or its
resistance to deformation.

The remaining term V is caused by viscosity and modelled according to assumption 2 in terms of
the gradient of the velocity. This makes intuitive sense: where the velocity is homogeneous, and the
gradient is zero, there is no friction between fluid elements - where the velocity differs greatly, there is
more friction. Since velocity is a vector quantity, the gradient∇v⃗ is a tensor4:

(∇v⃗)ij = ∂jvi =
∂vi
∂xj

(2.29)
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2.4 THE LAGRANGIAN NAVIER-STOKES EQUATIONS GOVERNING EQUATIONS OF FLUID FLOW

As always, we can decompose this tensor L := ∇v⃗ into a sum of a symmetric and an antisymmetric
part3:

L = D+W (2.30)

D =
1

2

(
L+ LT

)
(2.31)

W =
1

2

(
L− LT

)
(2.32)

(2.33)

D is referred to as the rate of deformation tensor andW is called the spin tensor.

This decomposition is convenient since the spin tensor does not contribute to viscosity and only the
rate of deformation tensor may be focused on. Note that since the deviatoric stress V we are trying
to approximate is symmetric, and it only makes sense to use the symmetric component of the velocity
gradient to model it.

Intuitively, the spin tensor encodes the rotational component of the velocity gradient, and a steadily
rotating fluid (whereD = ) is like a rigid body rotation: the relative positions of the fluid elements do not
change, only their orientation with respect to a fixed reference frame, and therefore there is no friction.
There is a vector ω⃗ such that for any v⃗ it holds thatWv⃗ = ω⃗× v⃗, where ω⃗ points in the axis of rotation
with a length of the angular velocity3. This is why the spin tensor is closely related to the vorticity tensor
2W3. In fact, enforcing that viscosity shall not affect the rotational component of velocity gradients
and preserving accurate vorticity is key to accurately simulating turbulences in incompressible flows and
conserving angular momentum7.

Focusing further on the rate of deformation tensor, assumption 2 can now fully be appreciated. One
defining characteristic of Newtonian fluids is the assumption dating back to Isaac Newton that viscosity
depends linearly on the rate of deformation tensor1. This means that terms of an order higher than linear
may be neglected for small velocity gradients4 and constant terms cannot occur since shear stress is only
proportional to the rate of deformation, not the state thereof3: if a shear stress is applied to a fluid it
will eventually continuously deform at some non-zero rate but will remain in that deformed state if the
stress is removed, unlike purely elastic materials3. In other words V must vanish when the velocity is
homogeneous since there is no friction in that case4.

We now know that for incompressible fluids V is of the form4:

V = 2µD+ λ(∇ · v⃗)1 (2.34)

=
2µ

2

(
(∇v⃗) + (∇v⃗)T

)
+ λ(∇ · v⃗)1︸ ︷︷ ︸

incompressibility = 0

(2.35)

= µ
(
(∇v⃗) + (∇v⃗)T

)
(2.36)

where µ is the dynamic viscosity1 or first-order viscosity4. A second-order viscosity λ exists for compress-
ible flows1, but can be neglected here.

Combining the deviatoric stress with the volumetric stress, the constitutive relation for the stress
tensor T of an incompressible, Newtonian fluid is finally obtained2:

T = −p1+ µ
(
(∇v⃗) + (∇v⃗)T

)
(2.37)

With the constitutive relation in hand, the Cauchy momentum equation can be revisited, and Equa-
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2.5 EQUATIONS OF STATE GOVERNING EQUATIONS OF FLUID FLOW

tion 2.37 can be inserted into Equation 2.27:

ρ
Dv⃗

Dt
= ∇ ·

(
−p1+ µ

(
(∇v⃗) + (∇v⃗)T

))
+ ρb⃗ext insert Eq. 2.37 into Eq. 2.27 (2.38)

ρ
Dv⃗

Dt
= ∇ · (−p1) + µ∇ ·

(
(∇v⃗) + (∇v⃗)T

)
+ ρb⃗ext ∇· is linear (2.39)

Dv⃗

Dt
= −1

ρ
∇p+ ν∇ ·

(
(∇v⃗) + (∇v⃗)T

)
+ b⃗ext ∇ · (−p1) = −∇p, divide by ρ (2.40)

Dv⃗

Dt
= −1

ρ
∇p+ ν

∇ · (∇v⃗)︸ ︷︷ ︸
=∇2v⃗

+∇ · (∇v⃗)T︸ ︷︷ ︸
=0

+ b⃗ext ∇· is linear (2.41)

Dv⃗

Dt
= −1

ρ
∇p+ ν∇2v⃗ + b⃗ext □ (2.42)

A few things of note happen in this derivation:

• The kinematic viscosity ν is defined as µ
ρ and inserted in Equation 2.40

• The identity ∇ · (−p1) = −∇ ·

p 0 0
0 p 0
0 0 p

 = −

∂p/∂x
∂p/∂y
∂p/∂y

 = −∇p is used in Equation 2.40.

• For sufficiently smooth v⃗ and∇·v⃗ = 0 one can show using the Theorem of Schwarz that∇·(∇v⃗) =
∇2v⃗ as annotated in Equation 2.414.

• Similarly, in Equation 2.41 ∇ · (∇v⃗T ) = ∇(∇ · v⃗) = 0 is used4, since the continuity equation for
fluids of homogeneous density implies ∇ · v⃗ = 0.

With all this, the final Navier-Stokes momentum equation for incompressible Newtonian fluids in
Lagrangian form is obtained in step 2.42:

Dv⃗

Dt
= −1

ρ
∇p+ ν∇2v⃗ + b⃗ext (2.43)

2.5 Equations of State

Although the momentum equation typically takes centre stage when discussing the Navier-Stokes equa-
tions, it is important to realize that the Navier-Stokes equations actually refer to a set of equations and
the momentum equation cannot function on its own. At the very least, the continuity equation should
be included, but even then only n of the n + 1 unknown variables in n dimensions are accounted for in
the equations: We have yet to discuss how to compute pressure.

When incompressibility is strongly enforced, the continuity equation is a constraint on the momen-
tum equation that p can be chosen to fulfil, making it a Lagrange multiplier to the equation2. Since
strongly enforced incompressibility generally requires solving a system to solve the Poisson equation for
pressure and can be more involved, a more straightforward approach is to employ an Equation of State

to couple pressure and velocities.
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